Arteries carry blood away from the heart while veins transports blood to it. These run throughout the body with a network of capillaries, embedded in tissue, connecting them. The arteries pass their oxygen-rich blood to the capillaries which allow the exchange of gases within the tissue. The capillaries then pass their waste-rich blood to the veins for transport back to the heart.
Vascular diseases are diseases that affect the vascular system such as the atherosclerosis. This happens when arteries start to harden and become thick and stiff. When the arteries harden, blood clots can occur and clog the blood vessels which blocks the blood flow to the heart or brain. This can trigger a heart attack or a stroke.
Weakened blood vessels can also burst causing internal bleeding or an aneurysm.
The real culprit behind hardened arteries? Stem cells, says landmark study
One of the top suspects behind killer vascular diseases is the victim of mistaken identity, according to researchers from the University of California, Berkeley, who used genetic tracing to help hunt down the real culprit.
The guilty party is not the smooth muscle cells within blood vessel walls, which for decades was thought to combine with cholesterol and fat that can clog arteries. Blocked vessels can eventually lead to heart attacks and strokes, which account for one in three deaths in the United States.
Instead, a previously unknown type of stem cell — a multipotent vascular stem cell — is to blame, and it should now be the focus in the search for new treatments, the scientists report in a new study appearing June 6 in the journal Nature Communications.
Video: Atherosclerosis
"For the first time, we are showing evidence that vascular diseases are actually a kind of stem cell disease," said principal investigator Song Li, professor of bioengineering and a researcher at the Berkeley Stem Cell Center. "This work should revolutionize therapies for vascular diseases because we now know that stem cells rather than smooth muscle cells are the correct therapeutic target."
The finding that a stem cell population contributes to artery-hardening diseases, such as atherosclerosis, provides a promising new direction for future research, the study authors said.
"This is groundbreaking and provocative work, as it challenges existing dogma," said Dr. Deepak Srivastava, director of the Gladstone Institute of Cardiovascular Disease at UC San Francisco, who provided some of the mouse vascular tissues used by the researchers. "Targeting the vascular stem cells rather than the existing smooth muscle in the vessel wall might be much more effective in treating vascular disease."
It is generally accepted that the buildup of artery-blocking plaque stems from the body's immune response to vessel damage caused by low-density lipoproteins, the bad cholesterol many people try to eliminate from their diets. Such damage attracts legions of white blood cells and can spur the formation of fibrous scar tissue that accumulates within the vessel, narrowing the blood flow.
The scar tissue, known as neointima, has certain characteristics of smooth muscle, the dominant type of tissue in the blood vessel wall. Because mature smooth muscle cells no longer multiply and grow, it was theorized that in the course of the inflammatory response, they revert, or de-differentiate, into an earlier state where they can proliferate and form matrices that contribute to plaque buildup.
In analyzing the cells from cross sections of the blood vessels, they found that more than 90 percent of the cells in the blood vessels were mature smooth muscle cells. They then isolated and cultured the cells taken from the middle layer of the mouse blood vessels.
After one month of cell expansion, the researchers saw a threefold increase in the size of the cell nucleus and the spreading area, along with an increase in stress fibers. Notably, none of the new, proliferating cells glowed green, which meant that their lineage could not be traced back to the mature smooth muscle cells originally isolated from the blood vessels.
"Not only was there a lack of green markers in the cell cultures, but we noticed that another type of cell isolated from the blood vessels exhibited progenitor traits for different types of tissue, not just smooth muscle cells," said Zhenyu Tang, co-lead author of the study and a Ph.D. student in the UC Berkeley-UCSF Graduate Program in Bioengineering.
The other co-lead author of the study, Aijun Wang, was a post-doctoral researcher in Li's lab.
UC Davis Medical Center |
Further experiments determined that the newly discovered vascular stem cells were multipotent, or capable of differentiating into various specialized cell types, including smooth muscle, nerve, cartilage, bone and fat cells. This would explain why previous studies misidentified the cells involved in vessel clogs as de-differentiated smooth muscle cells after vascular injury.
"In the later stages of vascular disease, the soft vessels become hardened and more brittle," said Li. "Previously, there was controversy about how soft tissue would become hard. The ability of stem cells to form bone or cartilage could explain this calcification of the blood vessels."
Other tests in the study showed that the multipotent stem cells were dormant under normal physiological conditions. When the blood vessel walls were damaged, the stem cells rather than the mature smooth muscle cells became activated and started to multiply.
The researchers analyzed human carotid arteries to confirm that the same type of multipotent vascular stem cells are found in human blood vessels.
"If your target is wrong, then your treatment can't be very effective," said Dr. Shu Chien, director of the Institute of Engineering in Medicine at UC San Diego, and Li's former adviser. "These new findings give us the right target and should speed up the discovery of novel treatments for vascular diseases."
RELATED LINKS
University of California - Berkeley
Nature Communications
Gladstone Institute of Cardiovascular Disease
UC Davis Medical Center
Institute of Engineering in Medicine at UC San Diego
National Institutes of Health
California Institute for Regenerative Medicine
New Stem Cell Line Offers Safe and Prolific Source for Disease and Transplant Studies
Newly Discovered Cardiac Stem Cells Repair Damaged Heart
Transforming Human Stem Cells to Cardiomyocytes Promises Efficient and Inexpensive Heart Treatments
Mending A Broken Heart
Medical Treatments Through Photonics
Scientists Find Way To Block Cancer Cell Growth
Long Term Diabetes Increases Risk of Stroke
Many Treatments Available To Help Prevent Migraine Unused
Studying 'Brain Freeze' Could Lead To New Treatments For Different Types of Headaches
Use of Gene Modified Blood Stem Cells Counteracts Toxic Effects of Chemotherapy