Argonne National Laboratory presented its research on surface and interface interactions with lithium ion batteries. This research was presented at a meeting of the American Chemical Society as part of the 245th National Meeting & Exposition of the American Chemical Society. The abstract on the presentation follows:
First principles atomistic modeling of surface and interfacial effects in lithium ion battery materials
Maria K Y Chan, Argonne National Laboratory
Phone: 630-252-4811
Email: mchan@anl.gov
Surfaces and interfaces play an important role in the performance of lithium ion batteries, including such effects as surface orientation-dependent lithiation, surface chemistry-dependent lithiation capacity, and the formation of the solid-electrolyte interphase (SEI). Computational modeling, especially first principles atomistic approaches, provides significant insight into these surface and interfacial effects. A significant challenge in such modeling is the construction of atomistic models to accurate describe the complexity of the surfaces and interfaces.
In this talk, I will discuss using a variety of first principles approaches to tackle the challenge of building accurate atomistic models of surfaces and interfaces in lithium ion battery materials. I will describe how such approaches are used to study: orientation-dependence, and the lack thereof, of lithiation in silicon and germanium; the effects of surface chemistry on the lithiation of silicon; the deposition of lithium on gold; and the formation of SEI on silicon.
First principles atomistic modeling of surface and interfacial effects in lithium ion battery materials
Maria K Y Chan, Argonne National Laboratory
Phone: 630-252-4811
Email: mchan@anl.gov
Surfaces and interfaces play an important role in the performance of lithium ion batteries, including such effects as surface orientation-dependent lithiation, surface chemistry-dependent lithiation capacity, and the formation of the solid-electrolyte interphase (SEI). Computational modeling, especially first principles atomistic approaches, provides significant insight into these surface and interfacial effects. A significant challenge in such modeling is the construction of atomistic models to accurate describe the complexity of the surfaces and interfaces.
In this talk, I will discuss using a variety of first principles approaches to tackle the challenge of building accurate atomistic models of surfaces and interfaces in lithium ion battery materials. I will describe how such approaches are used to study: orientation-dependence, and the lack thereof, of lithiation in silicon and germanium; the effects of surface chemistry on the lithiation of silicon; the deposition of lithium on gold; and the formation of SEI on silicon.
RELATED LINKS
Argonne National Laboratory