Organic electronics are materials that utilize carbon-based polymers and molecules to build electronic conductors and resistors. Instead of using inorganic materials such as copper and silicon, organic electronics are produced by printing out the material on inexpensive polymeric substrates like polyethylene terephtalate (PET) or polycarbonate (PC) that are cheaper than conventional inorganic components.
Ink jet printers or coating equipment (like those used to produce photographic film) can also be used to print out electronic components one on top of another to produce smaller more compact semiconductors.
Organic electronic products are thin, lightweight, and flexible. These properties have been proven effective in the modern application of electronic devices and gadgets such as touch sensors, display screens, and in solar cells. In solar cells, solar sheeting that are thin and translucent (similar to a plastic sheet) are products of organic electronics. Display screens such as OLED (Organic LED)screens are now used widely in the smartphone and tablet market.
FLUENCE - Fluid-Enhanced Crystal Engineering
Through innovations to a printing process, researchers have made major improvements to organic electronics – a technology in demand for lightweight, low-cost solar cells, flexible electronic displays and tiny sensors. The printing method is fast and works with a variety of organic materials to produce semiconductors of strikingly higher quality than what has so far been achieved with similar methods.
Organic electronics have great promise for a variety of applications, but even the highest quality films available today fall short in how well they conduct electrical current. The team from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have developed a printing process they call FLUENCE—fluid-enhanced crystal engineering—that for some materials results in thin films capable of conducting electricity 10 times more efficiently than those created using conventional methods.
"Even better, most of the concepts behind FLUENCE can scale up to meet industry requirements," said Ying Diao, a SLAC/Stanford postdoctoral researcher and lead author of the study, which appeared today in Nature Materials.
Stefan Mannsfeld, a SLAC materials physicist and one of the principal investigators of the experiment, said the key was to focus on the physics of the printing process rather than the chemical makeup of the semiconductor. Diao engineered the process to produce strips of big, neatly aligned crystals that electrical charge can flow through easily, while preserving the benefits of the "strained lattice" structure and "solution shearing" printing technique previously developed in the lab of Mannsfeld's co-principal investigator, Professor Zhenan Bao of the Stanford Institute for Materials and Energy Sciences, a joint SLAC-Stanford institute.
Video: Organic Electronics
To make the advance, Diao focused on controlling the flow of the liquid in which the organic material is dissolved. "It's a vital piece of the puzzle," she said. If the ink flow does not distribute evenly, as is often the case during fast printing, the semiconducting crystals will be riddled with defects. "But in this field there's been little research done on controlling fluid flow."
Diao designed a printing blade with tiny pillars embedded in it that mix the ink so it forms a uniform film. She also engineered a way around another problem: the tendency of crystals to randomly form across the substrate. A series of cleverly designed chemical patterns on the substrate suppress the formation of unruly crystals that would otherwise grow out of alignment with the printing direction. The result is a film of large, well-aligned crystals.
X-ray studies of the group's organic semiconductors at the Stanford Synchrotron Radiation Lightsource (SSRL) allowed them to inspect their progress and continue to make improvements, eventually showing neatly arranged crystals at least 10 times longer than crystals created with other solution-based techniques, and of much greater structural perfection.
The group also repeated the experiment using a second organic semiconductor material with a significantly different molecular structure, and again they saw a notable improvement in the quality of the film. They believe this is a sign the techniques will work across a variety of materials.
Principal investigators Bao and Mannsfeld say the next step for the group is pinning down the underlying relationship between the material and the process that enabled such a stellar result. Such a discovery could provide an unprecedented degree of control over the electronic properties of printed films, optimizing them for the devices that will use them.
"That could lead to a revolutionary advance in organic electronics," Bao said. "We've been making excellent progress, but I think we're only just scratching the surface."
RELATED LINKS
DOE/SLAC National Accelerator Laboratory
Nature Materials
New OLED Developed: Spin Polarized Organic LED (Spin OLED)
Cheaper, Stable and More Accurate Magnetic Field Sensor Using Organic Spintronics Developed
Nanotechnology And Vacuum Tube Technology For Faster And More Efficient Electronics
Nanotechnology and Plastics Develop New Type of Lighting That is Flicker-Free, Bendable and Shatterproof
Nanotechnology Develops Cheaper and More Effective Radiation Detectors
Inexpensive Rectenna and Advances in Near Field Communication For Fast and Efficient Mobile Transactions
Cyborg Tissues - Bioengineered Tissues With Embedded Nanoelectronics Developed
Magnetic Topological Insulator Eliminate Loss In Electrical Power Transmission
MIT News: Polymer Film Uses Water Vapor to Harvest Energy and Generate Electricity For Nanodevices
Spin Seebeck Effect Lead To Engines With No Moving Parts And Infinitely Reliable
Latest Studies and Developments in Lithium Ion Battery Technology Presented at American Chemical Society Meet
New Development in Organic Light Emitting Diode (OLED) Production
Spintronic 3D Microchip Developed