Researchers from The University of Manchester and the University of Bari have developed a biosensor that can differentiate smells that are similar to each other. The machine can distinguish the smell of two similar objects such as spearmint or caraway.
The scientists have found a way to manufacture odorant binding proteins in quantities that can be used in the biosensor. Odorant binding proteins helps the nose perceive the different smells by reacting to the different type of chemicals around
The biosensor incorporate the proteins using a transistor. By doing so, the team were able to detect and measure the changes in current as the proteins reacted to odors. The system is incredibly sensitive with a detection limit that approaches that of the human nose.
The findings are published in the journal Nature Communications.
Smelling Machines
Every odour has its own specific pattern which our noses are able to identify. Using a combination of proteins coupled to transistors, for the first time machines are able to differentiate smells that are mirror images of each other, so called chiral molecules, something that has not been possible before. The human nose can distinguish between some of these molecules and the different forms of the same molecule of carvone, for example, can smell either like spearmint or caraway. Previous machines would not have been able to distinguish between the two.
The development will allow the creation of a new generation of biosensors with an acute ability to sniff out problems. These could have many industrial uses such as telling when food has gone off, and they could even be accurate enough to smell how much pollution is in the atmosphere.
A collaboration of academics from The University of Manchester and the University of Bari in Italy, have created a biosensor that utilises an odorant binding protein. The team's findings are published today in the journal Nature Communications.
Odorant binding proteins are found in the mucus of the nose, which work olfactory receptors helping us to create our perception of smell. The team have found a method of manufacturing these proteins in quantities that would allow them to be used in biosensors.
They have developed methods to change the way the proteins react so that they can recognise different types of chemicals. Using a type of transistor incorporating these proteins the scientists were able to measure the unique changes in current as the proteins reacted to odours, and record them. This is in effect the machine smelling the odour and then sending the message, which can then be decoded.
The system is incredibly sensitive with a detection limit that approaches that of the human nose.
Professor Krishna Persaud, lead author of the paper at The University of Manchester, said: "It has been challenging to get machines to be able to differentiate between smells that are mirror images of each other, which was a real barrier to creating machines which are able to smell as well or better than humans.
"Using the expertise of our colleagues at the University of Bari to couple these proteins to field effect transistors has allowed us to produce a new chemical sensor platform. Now we have done this it will allow much better sensors to be developed and these could have many uses in industry. We shall be able to create biosensors which are accurate enough to be able to tell when food has gone off, or even smell how much pollution is in the atmosphere."
The scientists have found a way to manufacture odorant binding proteins in quantities that can be used in the biosensor. Odorant binding proteins helps the nose perceive the different smells by reacting to the different type of chemicals around
The biosensor incorporate the proteins using a transistor. By doing so, the team were able to detect and measure the changes in current as the proteins reacted to odors. The system is incredibly sensitive with a detection limit that approaches that of the human nose.
The findings are published in the journal Nature Communications.
Smelling Machines
Every odour has its own specific pattern which our noses are able to identify. Using a combination of proteins coupled to transistors, for the first time machines are able to differentiate smells that are mirror images of each other, so called chiral molecules, something that has not been possible before. The human nose can distinguish between some of these molecules and the different forms of the same molecule of carvone, for example, can smell either like spearmint or caraway. Previous machines would not have been able to distinguish between the two.
The development will allow the creation of a new generation of biosensors with an acute ability to sniff out problems. These could have many industrial uses such as telling when food has gone off, and they could even be accurate enough to smell how much pollution is in the atmosphere.
A collaboration of academics from The University of Manchester and the University of Bari in Italy, have created a biosensor that utilises an odorant binding protein. The team's findings are published today in the journal Nature Communications.
Odorant binding proteins are found in the mucus of the nose, which work olfactory receptors helping us to create our perception of smell. The team have found a method of manufacturing these proteins in quantities that would allow them to be used in biosensors.
They have developed methods to change the way the proteins react so that they can recognise different types of chemicals. Using a type of transistor incorporating these proteins the scientists were able to measure the unique changes in current as the proteins reacted to odours, and record them. This is in effect the machine smelling the odour and then sending the message, which can then be decoded.
The system is incredibly sensitive with a detection limit that approaches that of the human nose.
Professor Krishna Persaud, lead author of the paper at The University of Manchester, said: "It has been challenging to get machines to be able to differentiate between smells that are mirror images of each other, which was a real barrier to creating machines which are able to smell as well or better than humans.
"Using the expertise of our colleagues at the University of Bari to couple these proteins to field effect transistors has allowed us to produce a new chemical sensor platform. Now we have done this it will allow much better sensors to be developed and these could have many uses in industry. We shall be able to create biosensors which are accurate enough to be able to tell when food has gone off, or even smell how much pollution is in the atmosphere."
RELATED LINKS
University of Manchester
University of Bari
Nature Communications
Research Identifies 10 Basic Categories of Odor
Genetically Engineered Protein, ArcLight, Allows Direct Observation of Brain's Electrical Activity
How Nerve Cell Activity Between Neurons is Regulated Within the Brain's Hippocampus
Understanding How The Brain Spatially Represents Object and Action Categories Through fMRI
MIT News: Mucus - First Line of Defense in Immune Protection